Posted
: January 20, 2000
Status
:
Completed
Tags
:
Categories
:
RabbitMQ 是一款开源的,Erlang 编写的,基于 AMQP 协议的,消息中间件;
可以用它来:解耦、异步、削峰。
优点:解耦、异步、削峰;
缺点:降低了系统的稳定性:本来系统运行好好的,现在你非要加入个消息队列进去,那消息队列挂了,你的系统不是呵呵了。因此,系统可用性会降低;
增加了系统的复杂性:加入了消息队列,要多考虑很多方面的问题,比如:一致性问题、如何保证消息不被重复消费、如何保证消息可靠性传输等。因此,需要考虑的东西更多,复杂性增大。
(1)服务间异步通信
(2)顺序消费
(3)定时任务
(4)请求削峰
Broker: 简单来说就是消息队列服务器实体 Exchange: 消息交换机,它指定消息按什么规则,路由到哪个队列 Queue: 消息队列载体,每个消息都会被投入到一个或多个队列 Binding: 绑定,它的作用就是把exchange和queue按照路由规则绑定起来 Routing Key: 路由关键字,exchange根据这个关键字进行消息投递 VHost: vhost 可以理解为虚拟 broker ,即 mini-RabbitMQ server。其内部均含有独立的 queue、exchange 和 binding 等,但最最重要的是,其拥有独立的权限系统,可以做到 vhost 范围的用户控制。当然,从 RabbitMQ 的全局角度,vhost 可以作为不同权限隔离的手段(一个典型的例子就是不同的应用可以跑在不同的 vhost 中)。 Producer: 消息生产者,就是投递消息的程序 Consumer: 消息消费者,就是接受消息的程序 Channel: 消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务 由Exchange、Queue、RoutingKey三个才能决定一个从Exchange到Queue的唯一的线路。
broker
是指一个或多个 erlang node
的逻辑分组,且 node
上运行着 RabbitMQ
应用程序。
cluster
是在 broker
的基础之上,增加了 node
之间共享元数据的约束。
Queue 具有自己的 erlang 进程;exchange 内部实现为保存 binding 关系的查找表;channel 是实际进行路由工作的实体,即负责按照 routing_key 将 message 投递给 queue 。由 AMQP 协议描述可知,channel 是真实 TCP 连接之上的虚拟连接,所有 AMQP 命令都是通过 channel 发送的,且每一个 channel 有唯一的 ID。一个 channel 只能被单独一个操作系统线程使用,故投递到特定 channel 上的 message 是有顺序的。但一个操作系统线程上允许使用多个 channel 。
vhost
可以理解为虚拟 broker
,即 mini-RabbitMQ server
。其内部均含有独立的 queue
、exchange
和 binding
等,但最最重要的是,其拥有独立的权限系统,可以做到 vhost
范围的用户控制。当然,从 RabbitMQ
的全局角度,vhost
可以作为不同权限隔离的手段(一个典型的例子就是不同的应用可以跑在不同的 vhost
中)。
由于TCP连接的创建和销毁开销较大,且并发数受系统资源限制,会造成性能瓶颈。RabbitMQ使用信道的方式来传输数据。信道是建立在真实的TCP连接内的虚拟连接,且每条TCP连接上的信道数量没有限制。
若该队列至少有一个消费者订阅,消息将以循环(round-robin)的方式发送给消费者。每条消息只会分发给一个订阅的消费者(前提是消费者能够正常处理消息并进行确认)。
从概念上来说,消息路由必须有三部分:交换器、路由、绑定。生产者把消息发布到交换器上;绑定决定了消息如何从路由器路由到特定的队列;消息最终到达队列,并被消费者接收。
消息发布到交换器时,消息将拥有一个路由键(routing key),在消息创建时设定。 通过队列路由键,可以把队列绑定到交换器上。 消息到达交换器后,RabbitMQ会将消息的路由键与队列的路由键进行匹配(针对不同的交换器有不同的路由规则)。如果能够匹配到队列,则消息会投递到相应队列中;如果不能匹配到任何队列,消息将进入 “黑洞”。
常用的交换器主要分为一下三种:
在非 cluster
模式下,元数据主要分为 Queue
元数据(queue 名字和属性等)、Exchange
元数据(exchange 名字、类型和属性等)、Binding
元数据(存放路由关系的查找表)、Vhost
元数据(vhost 范围内针对前三者的名字空间约束和安全属性设置)。
在 cluster
模式下,还包括 cluster 中 node 位置信息和 node 关系信息。元数据按照 erlang node 的类型确定是仅保存于 RAM 中,还是同时保存在 RAM 和 disk 上。元数据在 cluster 中是全 node 分布的。
答:当你在单 node 上声明 queue 时,只要该 node 上相关元数据进行了变更,你就会得到 Queue.Declare-ok 回应;而在 cluster 上声明 queue ,则要求 cluster 上的全部 node 都要进行元数据成功更新,才会得到 Queue.Declare-ok 回应。另外,若 node 类型为 RAM node 则变更的数据仅保存在内存中,若类型为 disk node 则还要变更保存在磁盘上的数据。
死信队列&死信交换器:DLX 全称(Dead-Letter-Exchange),称之为死信交换器,当消息变成一个死信之后,如果这个消息所在的队列存在x-dead-letter-exchange参数,那么它会被发送到x-dead-letter-exchange对应值的交换器上,这个交换器就称之为死信交换器,与这个死信交换器绑定的队列就是死信队列。
RabbitMQ使用发送方确认模式,确保消息正确地发送到RabbitMQ。
发送方确认模式:将信道设置成confirm
模式(发送方确认模式),则所有在信道上发布的消息都会被指派一个唯一的ID。一旦消息被投递到目的队列后,或者消息被写入磁盘后(可持久化的消息),信道会发送一个确认给生产者(包含消息唯一ID)。如果RabbitMQ
发生内部错误从而导致消息丢失,会发送一条nack
(not acknowledged,未确认)消息。发送方确认模式是异步的,生产者应用程序在等待确认的同时,可以继续发送消息。当确认消息到达生产者应用程序,生产者应用程序的回调方法就会被触发来处理确认消息。
接收方消息确认机制:消费者接收每一条消息后都必须进行确认(消息接收和消息确认是两个不同操作)。只有消费者确认了消息,RabbitMQ
才能安全地把消息从队列中删除。这里并没有用到超时机制,RabbitMQ
仅通过Consumer
的连接中断来确认是否需要重新发送消息。也就是说,只要连接不中断,RabbitMQ
给了Consumer
足够长的时间来处理消息。
下面罗列几种特殊情况:
先说为什么会重复消费:正常情况下,消费者在消费消息的时候,消费完毕后,会发送一个确认消息给消息队列,消息队列就知道该消息被消费了,就会将该消息从消息队列中删除;
但是因为网络传输等等故障,确认信息没有传送到消息队列,导致消息队列不知道自己已经消费过该消息了,再次将消息分发给其他的消费者。
针对以上问题,一个解决思路是:保证消息的唯一性,就算是多次传输,不要让消息的多次消费带来影响;保证消息等幂性;
比如:在写入消息队列的数据做唯一标示,消费消息时,根据唯一标识判断是否消费过;
消息不可靠的情况可能是消息丢失,劫持等原因;
丢失又分为:生产者丢失消息、消息列表丢失消息、消费者丢失消息;
生产者丢失消息:从生产者弄丢数据这个角度来看,RabbitMQ 提供 transaction 和 confirm 模式来确保生产者不丢消息;
transaction 机制就是说:发送消息前,开启事务(channel.txSelect()), 然后发送消息,如果发送过程中出现什么异常,事务就会回滚(channel.txRollback()), 如果发送成功则提交事务(channel.txCommit())。然而,这种方式有个缺点:吞吐量下降;
confirm 模式用的居多:一旦 channel 进入 confirm 模式,所有在该信道上发布的消息都将会被指派一个唯一的 ID(从 1 开始),一旦消息被投递到所有匹配的队列之后;
rabbitMQ 就会发送一个 ACK 给生产者(包含消息的唯一 ID),这就使得生产者知道消息已经正确到达目的队列了;
如果 rabbitMQ 没能处理该消息,则会发送一个 Nack 消息给你,你可以进行重试操作。
消息队列丢数据:消息持久化。
处理消息队列丢数据的情况,一般是开启持久化磁盘的配置。
这个持久化配置可以和 confirm 机制配合使用,你可以在消息持久化磁盘后,再给生产者发送一个 Ack 信号。
这样,如果消息持久化磁盘之前,rabbitMQ 阵亡了,那么生产者收不到 Ack 信号,生产者会自动重发。
那么如何持久化呢?
这里顺便说一下吧,其实也很容易,就下面两步
这样设置以后,即使 rabbitMQ 挂了,重启后也能恢复数据
消费者丢失消息:消费者丢数据一般是因为采用了自动确认消息模式,改为手动确认消息即可!
消费者在收到消息之后,处理消息之前,会自动回复 RabbitMQ 已收到消息;
如果这时处理消息失败,就会丢失该消息;
解决方案:处理消息成功后,手动回复确认消息。
单线程消费保证消息的顺序性;对消息进行编号,消费者处理消息是根据编号处理消息;
死信消息:
消息被拒绝(Basic.Reject或Basic.Nack)并且设置 requeue 参数的值为 false 消息过期了 队列达到最大的长度
过期消息:
在 rabbitmq 中存在2种方可设置消息的过期时间,第一种通过对队列进行设置,这种设置后,该队列中所有的消息都存在相同的过期时间,第二种通过对消息本身进行设置,那么每条消息的过期时间都不一样。如果同时使用这2种方法,那么以过期时间小的那个数值为准。当消息达到过期时间还没有被消费,那么那个消息就成为了一个 死信 消息。
队列设置:在队列申明的时候使用 x-message-ttl 参数,单位为 毫秒
单个消息设置:是设置消息属性的 expiration 参数的值,单位为 毫秒
延时队列:在rabbitmq中不存在延时队列,但是我们可以通过设置消息的过期时间和死信队列来模拟出延时队列。消费者监听死信交换器绑定的队列,而不要监听消息发送的队列。
有了以上的基础知识,我们完成以下需求:
需求:用户在系统中创建一个订单,如果超过时间用户没有进行支付,那么自动取消订单。
分析:
1、上面这个情况,我们就适合使用延时队列来实现,那么延时队列如何创建 2、延时队列可以由 过期消息+死信队列 来时间 3、过期消息通过队列中设置 x-message-ttl 参数实现 4、死信队列通过在队列申明时,给队列设置 x-dead-letter-exchange 参数,然后另外申明一个队列绑定x-dead-letter-exchange对应的交换器。
1.系统可用性降低:你想啊,本来其他系统只要运行好好的,那你的系统就是正常的。现在你非要加个消息队列进去,那消息队列挂了,你的系统不是呵呵了。因此,系统可用性降低
2.系统复杂性增加:要多考虑很多方面的问题,比如一致性问题、如何保证消息不被重复消费,如何保证保证消息可靠传输。因此,需要考虑的东西更多,系统复杂性增大。
当消费者有x条消息没有响应ACK时,不再给这个消费者发送消息
channel.basicQos(int x)
https://www.cnblogs.com/woadmin/p/10537174.html
https://blog.csdn.net/thinkwon/article/details/104588612/
https://www.cnblogs.com/coder-programming/p/12465314.html
Be the first one to comment on this page!